LearnElectrics.com

Ohm's Law and Power Matrix

TWO KNOWN VALUES		VOLTAGE	CURRENT	RESISTANCE	POWER
$\begin{aligned} & \text { VOLTAGE } \\ & \mathrm{V} \end{aligned}$	CURRENT I or A			$\mathbf{R}=\frac{\mathrm{V}}{\mathrm{I}}$	$\mathbf{P}=\mathbf{V} \times \mathbf{I}$
VOLTAGE V	RESISTANCE R or Ω		$\mathrm{I}=\frac{\mathrm{V}}{\mathbf{R}}$		$\mathbf{P}=\mathbf{V}^{\mathbf{2}} \div \mathbf{R}$
$\begin{aligned} & \text { VOLTAGE } \\ & \mathrm{V} \end{aligned}$	POWER P or W		$\mathrm{I}=\frac{\mathbf{P}}{\mathbf{V}}$	$\mathbf{R}=\frac{\mathbf{V}^{\mathbf{2}}}{\mathbf{P}}$	
CURRENT I or A	$\begin{aligned} & \text { RESISTANCE } \\ & \mathrm{R} \text { or } \Omega \end{aligned}$	$\mathbf{V}=\mathbf{I} \times \mathbf{R}$			$\mathrm{P}=\mathrm{I}^{\mathbf{2}} \times \mathrm{R}$
CURRENT I or A	POWER P or W	$V=\frac{P}{I}$		$\mathbf{R}=\frac{\mathbf{P}}{\mathbf{I}^{\mathbf{2}}}$	
$\begin{aligned} & \text { RESISTANCE } \\ & \mathrm{R} \text { or } \Omega \end{aligned}$	POWER P or W	$\mathbf{V}=\sqrt{\mathbf{P} \times \mathbf{R}}$	$\mathbf{I}=\sqrt{\mathbf{P} \div \mathbf{R}}$	LearnEle	cs.com

